22 research outputs found

    Predicting Lithium-ion Battery Resistance Degradation using a Log-Linear Model

    Get PDF

    A Time-Varying Log-linear Model for Predicting the Resistance of Lithium-ion Batteries

    Get PDF

    A digital twin to quantitatively understand aging mechanisms coupled effects of NMC battery using dynamic aging profiles

    Get PDF
    Traditional lithium-ion battery modeling does not provide sufficient information to accurately verify battery performance under real-time dynamic operating conditions, particularly when considering various aging modes and mechanisms. To improve the current methods, this paper proposes a lithium-ion battery digital twin that can capture real-time data and integrate the strong coupling between SEI layer growth, anode crack propagation, and lithium plating. It can be utilized to estimate aging behavior from macroscopic full-cell level to microscopic particle level, including voltage-current profiles in dynamic aging conditions, predict the degradation behavior of Nickel-Manganese-Cobalt-Oxide (NMC) based lithium-ion batteries, and assist in electrochemical analysis. This model can improve the root cause analysis of cell aging, enabling a quantitative understanding of aging mechanism coupled effects. Three charging protocols with dynamic discharging profiles are developed to simulate real vehicle operation scenarios and used to validate the digital twin, combining operando impedance measurements, post-mortem analysis, and SEM to further prove the conclusions. The digital twin can accurately predict battery capacity fade within 0.4% MAE. The results indicate that SEI layer growth is the primary contributor to capacity degradation and resistance increase. Based on the analysis of the model, it is concluded that one of the proposed multi-step charging protocols, in comparison to a standard continuous charging protocol, can reduce the degradation of NMC-based lithium-ion batteries. This paper represents a firm physical foundation for future physics-informed machine learning development

    Smart Battery Technology for Lifetime Improvement

    Get PDF
    Applications of lithium-ion batteries are widespread, ranging from electric vehicles to energy storage systems. In spite of nearly meeting the target in terms of energy density and cost, enhanced safety, lifetime, and second-life applications, there remain challenges. As a result of the difference between the electric characteristics of the cells, the degradation process is accelerated for battery packs containing many cells. The development of new generation battery solutions for transportation and grid storage with improved performance is the goal of this paper, which introduces the novel concept of Smart Battery that brings together batteries with advanced power electronics and artificial intelligence (AI). The key feature is a bypass device attached to each cell that can insert relaxation time to individual cell operation with minimal effect on the load. An advanced AI-based performance optimizer is trained to recognize early signs of accelerated degradation modes and to decide upon the optimal insertion of relaxation time. The resulting pulsed current operation has been proven to extend lifetime by up to 80% in laboratory aging conditions. The Smart Battery unique architecture uses a digital twin to accelerate the training of performance optimizers and predict failures. The Smart Battery technology is a new technology currently at the proof-of-concept stage
    corecore